Minds vs. Machines: How far are we from the common sense of a toddler?

CVPR 2020 Workshop, June 15, Seattle, WA (held virtually)

Reverse-engineering core common sense with the tools of probabilistic programs, game-style simulation engines, and inductive program synthesis

Joshua Tenenbaum

Abstract: None of today’s AI systems or approaches comes anywhere close to capturing the common sense of a toddler, or even a 3-month old infant. I will talk about some of the challenges facing conventional machine learning paradigms, such as end-to-end unsupervised learning in deep networks and deep reinforcement learning, and discuss some initial, small steps we have taken with an alternative cognitively-inspired AI approach. This requires us to develop a different engineering toolset, based on probabilistic programs, game-style simulation programs as general-purpose startup software ( or “the game engine in the head”), and learning as programming (or “the child as hacker”).

Speaker bio: Joshua Tenenbaum is Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences, the Computer Science and Artificial Intelligence Laboratory (CSAIL) and the Center for Brains, Minds and Machines (CBMM). He received his PhD from MIT in 1999, and taught at Stanford from 1999 to 2002. His long-term goal is to reverse-engineer intelligence in the human mind and brain, and use these insights to engineer more human-like machine intelligence. In cognitive science, he is best known for developing theories of cognition as probabilistic inference in structured generative models, and applications to concept learning, causal reasoning, language acquisition, visual perception, intuitive physics, and theory of mind. In AI, he and his group have developed widely used models for nonlinear dimensionality reduction, probabilistic programming, and Bayesian unsupervised learning and structure discovery. His current research focuses on commonsense visual scene understanding and its neural basis, and the development of common sense in infants, young children and machines. His work has been published in many leading journals and recognized with awards at conferences in Cognitive Science, Computer Vision, Neural Information Processing Systems, Reinforcement Learning and Decision Making, and Robotics. He is the recipient of the Distinguished Scientific Award for Early Career Contributions in Psychology from the American Psychological Association (2008), the Troland Research Award from the National Academy of Sciences (2011), the Howard Crosby Warren Medal from the Society of Experimental Psychologists (2016), the R&D Magazine Innovator of the Year award (2018), and a MacArthur Fellowship (2019). He is a fellow of the Cognitive Science Society, the Society for Experimental Psychologists, and a member of the American Academy of Arts and Sciences.

Full workshop schedule